
PRACTICE SET FOR MIDTERM 1

Problem 1
Find the natural domain and the horizontal/vertical asymptotes of the following functions

(1) f(x) =
x+ 1

x2
.

Domain: x2 6= 0, so x 6= 0. In interval notation

]−∞, 0[∪]0,+∞[.

Asymptotes:

lim
x→−∞

x+ 1

x2
= lim

x→−∞

x(1 + 1
x
)

x2
= lim

x→−∞

1 + 1
x

x
= 0 → y = 0 HOR ASYMPTOTE (at −∞)

lim
x→+∞

x+ 1

x2
= lim

x→+∞

x(1 + 1
x
)

x2
= lim

x→+∞

1 + 1
x

x
= 0 → y = 0 HOR ASYMPTOTE (at +∞)

lim
x→0−

x+ 1

x2
= +∞ → x = 0 VERT ASYMPTOTE

lim
x→0+

x+ 1

x2
= +∞ → x = 0 VERT ASYMPTOTE

(2) f(x) = e
1

x2−9 .

Domain: x2 − 9 6= 0, so x 6= ±3. In interval notation

]−∞,−3[∪]− 3, 3[∪]3,+∞[.

Asymptotes

lim
x→−∞

1

x2 − 9
= 0 ⇒ lim

x→−∞
e

1
x2−9 = e0 = 1 → y = 1 HOR ASYMPTOTE (at −∞)

lim
x→+∞

1

x2 − 9
= 0 ⇒ lim

x→+∞
e

1
x2−9 = e0 = 1 → y = 1 HOR ASYMPTOTE (at +∞)

lim
x→−3−

1

x2 − 9
= +∞ ⇒ lim

x→−3−
e

1
x2−9 = +∞ → x = −3 VERT ASYMPTOTE

lim
x→−3+

1

x2 − 9
= −∞ ⇒ lim

x→−3+
e

1
x2−9 = 0

lim
x→3−

1

x2 − 9
= −∞ ⇒ lim

x→3−
e

1
x2−9 = 0

lim
x→3+

1

x2 − 9
= +∞ ⇒ lim

x→3+
e

1
x2−9 = +∞ → x = 3 VERT ASYMPTOTE

1



(3) f(x) = arctg

(
x3 + 4

x3

)
.

Domain: x3 6= 0, so x 6= 0. In interval notation

]−∞, 0[∪]0,+∞[.

Asymptotes:

lim
x→−∞

x3 + 4

x3
= lim

x→−∞
1 +

4

x3
= 1⇒ lim

x→−∞
arctg

(
x3 + 4

x3

)
= arctg(1) =

π

4

→ y =
π

4
HOR ASYMPTOTE (at −∞)

lim
x→+∞

x3 + 4

x3
= lim

x→+∞
1 +

4

x3
= 1⇒ lim

x→−∞
arctg

(
x3 + 4

x3

)
= arctg(1) =

π

4

→ y =
π

4
HOR ASYMPTOTE (at +∞)

lim
x→0−

x3 + 4

x3
= −∞⇒ lim

x→0−
arctg

(
x3 + 4

x3

)
= −π

2

lim
x→0+

x3 + 4

x3
= +∞⇒ lim

x→0+
arctg

(
x3 + 4

x3

)
=
π

2

so no vertical asymptotes.

(4) f(x) = ln

(
3x− 1

x− 2

)
.

Domain: 3x−1
x−2 > 0.

N : 3x− 1 > 0 ⇒ x >
1

3
D : x− 2 > 0 ⇒ x > 2

In interval notation

]−∞, 1

3
[∪ ]2,+∞[.



Asymptotes:

lim
x→−∞

3x− 1

x− 2
= lim

x→−∞

x(3− 1
x
)

x(1− 2
x
)

= 3⇒ lim
x→−∞

ln

(
3x− 1

x− 2

)
= ln(3)

→ y = ln(3) HOR ASYMPTOTE (at −∞)

lim
x→+∞

3x− 1

x− 2
= lim

x→+∞

x(3− 1
x
)

x(1− 2
x
)

= 3⇒ lim
x→+∞

ln

(
3x− 1

x− 2

)
= ln(3)

→ y = ln(3) HOR ASYMPTOTE (at +∞)

lim
x→ 1

3

−

3x− 1

x− 2
= 0⇒ lim

x→ 1
3

−
ln

(
3x− 1

x− 2

)
= −∞ → x =

1

3
VERT ASYMPTOTE

lim
x→2+

3x− 1

x− 2
= +∞⇒ lim

x→2+
ln

(
3x− 1

x− 2

)
= +∞ → x = 2 VERT ASYMPTOTE

(5) f(x) =
cos(x2)

x2 + 1
.

Domain: x2 + 1 6= 0. Since x2 is always positive, x2 + 1 is always different than 0, and the
domaoin is R. In interval notation

]−∞,+∞[.

Asymptotes: Note that −1 ≤ cos(x2) ≤ 1 for every x ∈ R. Therefore

− 1

x2 + 1
≤ cos(x2)

x2 + 1
≤ 1

x2 + 1
.

Now, since

lim
x→−∞

− 1

x2 + 1
= 0 and lim

x→−∞

1

x2 + 1
= 0,

by the squeeze theorem

lim
x→−∞

cos(x2)

x2 + 1
= 0 → y = 0 HOR ASYMPTOTE (at −∞).

Similarly, by the squeeze theorem

lim
x→+∞

cos(x2)

x2 + 1
= 0 → y = 0 HOR ASYMPTOTE (at +∞).



Problem 2
Compute the following limits if they exist or prove that they don’t exist

(6) lim
x→+∞

3e4x + 1

ex − e4x
= lim

x→+∞

e4x(3 + 1
e4x

)

e4x( 1
e3x
− 1)

= lim
x→+∞

3 + 1
e4x

1
e3x
− 1

= −3.

(7)

lim
x→0

2−
√

4 + x2

9x2
= lim

x→0

2−
√

4 + x2

9x2
· 2 +

√
4 + x2

2 +
√

4 + x2
= lim

x→0

4− 4− x2

9x2(2 +
√

4 + x2)

= lim
x→0
− 1

9(2 +
√

4 + x2)
= − 1

9 · 4

(8)
lim
x→0

10
3+2x
− 10

3

x2 − 2x
= lim

x→0

30−30−20x
3(3+2x)

x(x− 2)
= lim

x→0

−20x

3(3 + 2x)
· 1

x(x− 2)
= lim

x→0

−20

3(3 + 2x)(x− 2)

=
−20

3 · 3 · (−2)
=

10

9

(9) lim
x→−∞

cos(4x) · e−x2

.

Note that −1 ≤ cos(4x) ≤ 1 for every x ∈ R. Therefore

−e−x2 ≤ cos(4x) · e−x2 ≤ e−x
2

.

Now, since limx→−∞(−x2) = −∞ we have

lim
x→−∞

−e−x2

= 0 and lim
x→−∞

e−x
2

= 0.

Therefore, by the squeeze theorem

lim
x→−∞

cos(4x) · e−x2

= 0.

(10) lim
x→+∞

sin(x) · x

x2 − 2
.

Similarly to the previous problem we have −1 ≤ sin(x) ≤ 1 for every x ∈ R. Therefore

− x

x2 − 2
≤ sin(x) · x

x2 − 2
≤ x

x2 − 2
.

Now we can compute

lim
x→∞
− x

x2 − 2
= lim

x→∞
− x

x2(1− 2
x2 )

= lim
x→∞
−1

x
· 1

(1− 2
x2 )

= 0

lim
x→∞

x

x2 − 2
= lim

x→∞

x

x2(1− 2
x2 )

= lim
x→∞

1

x
· 1

(1− 2
x2 )

= 0.

Therefore by the squeeze theorem we have

lim
x→+∞

sin(x) · x

x2 − 2
= 0.

(11) lim
x→0

|x3|
x3 − x

.

The function |x3| is piecewise defined:

|x3| =

{
x3 if x ≥ 0

−x3 if x < 0



therefore we compute the sided limits:

lim
x→0+

|x3|
x3 − x

= lim
x→0+

x3

x(x2 − 1)
= lim

x→0+

x2

x2 − 1
= 0

lim
x→0−

|x3|
x3 − x

= lim
x→0+

−x3

x(x2 − 1)
= lim

x→0+

−x2

x2 − 1
= 0

and in conclusion

lim
x→0

|x3|
x3 − x

= 0

.

(12) lim
x→−1

2x+ 2

|x+ 1|
The function |x+ 1| is piecewise defined:

|x+ 1| =

{
x+ 1 if x ≥ −1

−(x+ 1) if x < −1

therefore we compute the sided limits:

lim
x→−1+

2x+ 2

|x+ 1|
= lim

x→−1+

2(x+ 1)

x+ 1
= lim

x→−1+

2

1
= 2

lim
x→−1−

2x+ 2

|x+ 1|
= lim

x→−1−

−2(x+ 1)

x+ 1
= lim

x→−1−

−2

1
= −2

and we conclude that

lim
x→−1

2x+ 2

|x+ 1|
doesn’t exist.

(13)

lim
x→−∞

√
x2 + 1

7x
= lim

x→−∞

√
x2(1 + 1

x2 )

7x
= lim

x→−∞

−x ·
√

1 + 1
x2

7x
= lim

x→−∞

−
√

1 + 1
x2

7
= −1

7
.



Problem 3
Are the following functions continuous? If not classify the type of discontinuity they
exhibit.

(14) f(x) =
√
x6 + x4 + 2.

Note that x6 + x4 + 2 is always positive, so the domain is R.
As a composition of a square root and a polynomial (which are continuous functions) f is
continuous everywhere.

(15) f(x) = |x2 − 4|.

As a composition of the absolute value function and a polynomial (which are continuous) f
is continuous everywhere.

(16) f(x) =

{
x+1
x−2 for x > 2

x3 − 1 for x ≤ 2

Note that the function is continuous at every point different than 2. We need to check
x = 2.

lim
x→2−

f(x) = lim
x→2−

(x3 − 1) = 7

lim
x→2+

f(x) = lim
x→2+

x+ 1

x− 2
= +∞

so the function has an INFINITE discontinuity at x = 2.

(17) f(x) =

{
e−

1
x2 for x 6= 0

1 for x = 0

As a composition of continuous functions, f is continuous at every point different than 0.
We need to check x = 0.

lim
x→0−

f(x) = lim
x→0−

e−
1
x2 = 0 because lim

x→0−
− 1

x2
= −∞

lim
x→0+

f(x) = lim
x→0+

e−
1
x2 = 0 because lim

x→0+
− 1

x2
= −∞

f(0) = 1

so the function has a REMOVABLE discontinuity at x = 0.

Do the following equations admit any real solutions?

(18) ln(x− 1) + ln(x) = 1.

This equation can be solved explicitly.
Domain (both logarithms must exist at the same time):

x > 1

x > 0

so we get the domain by taking the intersection, which is x > 0. Now we can apply proper-
ties of logarithms to solve it:



ln(x(x− 1)) = 1

ln(x2 − x) = ln(e)

x2 − x = e

x2 − x− e = 0

and using the quadratic formula we get

x1, x2 =
1±
√

1 + 4e

2

but only x1 = 1+
√
1+4e
2

is acceptable ( because
√

1 + 4e > 1 so 1−
√

1 + 4e < 0).

(19) x5 − x = 2.

We can’t solve this explicitly, so rewrite it in the form

x5 − x− 2 = 0.

Consider the function f(x) = x5 − x− 2, which is CONTINUOUS for every x ∈ R.
Note that f(0) = −2 < 0 and f(2) = 25 − 2 − 2 > 0, therefore by the Intermediate Value
Theorem the equation has at least one solution in the interval [0, 2].

(20) arctg(x) = x3 − x.
Simply note that x = 0 is a solution of the equation.

(21) ex + x2 + 2 = 0.

Note that ex+x2+2 is always greater than 2, in particular it can never be 0. So the equation
doesn’t admit any real solution (@x ∈ R).



Problem 4
Compute the derivatives of the following functions

(22)
f(x) = (x3 − 3x2 + 1) cos(3x2)

f ′(x) = (3x2 − 6x) cos(3x2) + (x3 − 3x2 + 1)(− sin(3x2))6x

(23)
f(x) =

arctg(x2)

e−x
= ex arctg(x2)

f ′(x) = ex arctg(x2) + ex
1

1 + x4
(2x)

(24)
f(x) =

4
√
x6 − 2 = (x6 − 2)

1
4

f ′(x) =
1

4
(x6 − 2)

−3
4 6x5

(25)

f(x) = arcsin

(
3

x3

)
= arcsin(3x−3)

f ′(x) =
1√

1− (3x−3)2
(−9x−4)

(26)
f(x) = sin5(3x) = (sin(3x))5

f ′(x) = 5(sin(3x))4 cos(3x) · 3

(27)

f(x) = (x5 + 1)2x−1 = eln((x
5+1)2x−1) = e(2x−1) ln(x

5+1)

f ′(x) = e(2x−1) ln(x
5+1)

(
2 ln(x5 + 1) + (2x− 1)

1

x5 + 1
· 5x4

)



Problem 5
Find dy

dx
for the functions implicitly defined by the following equations

x2 = y3 − 2x.(28)

2x = 3y2
dy

dx
− 2

dy

dx
=

2x+ 2

3y2
.

cos(y) = xy2 + 2(29)

− sin(y)
dy

dx
= y2 + 2xy

dy

dx

2xy
dy

dx
+ sin(y)

dy

dx
= −y2

dy

dx
(2xy + sin(y)) = −y2

dy

dx
=

−y2

2xy + sin(y)
.

ln(xy) = x+ y(30)

1

xy

(
y + x

dy

dx

)
= 1 +

dy

dx

1

x
+

1

y

dy

dx
− dy

dx
= 1

dy

dx

(
1

y
− 1

)
= 1− 1

x

dy

dx
=

1− 1
x

1
y
− 1

arcsin(y2) = ex+y(31)

1√
1− y4

· 2y dy

dx
= ex+y

(
1 +

dy

dx

)
2y√

1− y4
dy

dx
− ex+y dy

dx
= ex+y

dy

dx
=

ex+y

2y√
1−y4
− ex+y



Problem 6
32) Determine the equation of the tangent line to the graph of the function f(x) = ln(x) at
x = 1.
f ′(x) = 1

x
.

Slope of tangent line at x = 1 is given by f ′(1) = 1.
The point is given by x = 1, y = ln(1) = 0.
Therefore the equation of the tangent is y = x− 1.

Is there a point where the tangent is parallel to the line y = 3x− 1?
Being parallel to a line means having the same slope. Therefore we are looking for points x
where f ′(x) = 3. This gives the equation 1

x
= 3 which has solution x = 1

3
. Therefore the

tangent to the graph of y = ln(x) is parallel to the line y = 3x− 1 at the point
(1/3, ln(1/3)).

Is there a point where the tangent is horizontal?
Being horizontal means slope = 0. Therefore we need to solve

1

x
= 0

which is impossible. So there are no points where the tangent is horizontal.

33) Determine the equation of the tangent line to the ellipse of horizontal semi-axis 3 and
vertical semi-axis 4 at the point (

√
5, 8

3
).

The equation of such ellipse is

x2

9
+
y2

16
= 1.

To find the tangent at (
√

5, 8
3
) we need to find dy

dx
at x =

√
5, y = 8

3
. We use implicit

differentiation:

2

9
x+

2

16
y

dy

dx
= 0

dy

dx
= −x

9
· 16

y
= −
√

5

9
· 16 · 3

8
= −2

3

√
5.

Therefore the equation of the tangent is y − 8
3

= −2
3

√
5(x−

√
5).

Are there any points where the tangent to the ellipse is horizontal?
This means

dy

dx
= 0 so − x

9
· 16

y
= 0

which has solution x = 0. This corresponds to 2 points on the ellipse, namely (0, 4) and
(0,−4).

34)Is the line y = −x+ 2 tangent to the graph of the function y = ln(x2 + 1)?
The given line has slope equal to −1.
First let’s see if there is any point where f ′(x) = −1.
f(x) = ln(x2 + 1) so f ′(x) = 2x

x2+1
.

Solve the equation

2x

x2 + 1
= −1

2x = −x2 − 1

x2 + 2x+ 1 = 0

(x+ 1)2 = 0

x = −1.



Now let’s find the tangent line at x = −1. The y coordinate of the point on the graph is
y = ln(1 + 1) = ln(2), so the tangent line is

y − ln(2) = −(x+ 1)

which is clearly different than y = −x+ 2. In conclusion y = −x+ 2 is not tangent to the
graph of y = ln(x2 + 1).

35*) Suppose f(x) ≤ x cos
(

1√
x

)
for all x > 0. Can we compute lim

x→0+
f(x)?

What if |f(x)| ≤ x cos
(

1√
x

)
for all x > 0?

Note that −x ≤ x cos
(

1√
x

)
≤ x and therefore by the squeeze theorem

lim
x→0+

x cos

(
1√
x

)
= 0.

Similarly

lim
x→0+

−x cos

(
1√
x

)
= 0.

Now, in the case |f(x)| ≤ x cos
(

1√
x

)
, by eliminating the absolute value we get the bounds

−x cos

(
1√
x

)
≤ f(x) ≤ x cos

(
1√
x

)
therefore by the squeeze theorem

lim
x→0+

f(x) = 0.

If we only have f(x) ≤ x cos
(

1√
x

)
we can’t apply the same reasoning, because we are

missing a lower bound and we can’t determine the limit of f(x).

36**) Does there exist a common tangent to the curves y = ex and y = −x2?
Let’s compute the equation of the tangent line to f(x) = ex at a generic point (a, ea).
f ′(x) = ex so the equation of such tangent is y − ea = ea(x− a) and simplifying

y = eax− aea + ea.

Now let’s compute the tangent to g(x) = −x2 at a generic point (b,−b2). g′(x) = −2x so
the tangent is y + b2 = −2b(x− b) and simplifying

y = −2bx+ b2.

The curves have a common tangent if the slopes and the y-intercepts of the 2 tangents are
the same, in other words if the following system admits a solution:{

ea = −2b

−aea + ea = b2
⇒

{
b = −1

2
ea

−aea + ea = 1
4
e2a

.

The system has solution if the equation −aea + ea = 1
4
e2a has a solution. Dividing both

sides by ea the equation reduces to

−a+ 1 =
1

4
e2a

which can’t be solved explicitly. So we rewrite it as

1

4
e2a + a− 1 = 0

and consider the function F (a) = 1
4
e2a + a− 1 which is continuous everywhere. Moreover

F (0) = 1
4
− 1 < 0 and F (1) = 1

4
e > 0 so by the IVT there is at least a solution. Therefore

there is at least one common tangent to the 2 graphs.


