PRACTICE SET FOR MIDTERM 1

Problem 1

Find the natural domain and the horizontal/vertical asymptotes of the following functions
(1) $\quad f(x)=\frac{x+1}{x^{2}}$.

Domain: $x^{2} \neq 0$, so $x \neq 0$. In interval notation

$$
]-\infty, 0[\cup] 0,+\infty[.
$$

Asymptotes:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}} & =\lim _{x \rightarrow-\infty} \frac{x\left(1+\frac{1}{x}\right)}{x^{2}}=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{x}=0 \rightarrow y=0 \text { HOR ASYMPTOTE }(\text { at }-\infty) \\
\lim _{x \rightarrow+\infty} \frac{x+1}{x^{2}} & =\lim _{x \rightarrow+\infty} \frac{x\left(1+\frac{1}{x}\right)}{x^{2}}=\lim _{x \rightarrow+\infty} \frac{1+\frac{1}{x}}{x}=0 \rightarrow y=0 \text { HOR ASYMPTOTE }(\text { at }+\infty) \\
\lim _{x \rightarrow 0^{-}} \frac{x+1}{x^{2}} & =+\infty \rightarrow x=0 \text { VERT ASYMPTOTE } \\
\lim _{x \rightarrow 0^{+}} \frac{x+1}{x^{2}} & =+\infty \rightarrow x=0 \text { VERT ASYMPTOTE } \\
& f(x)=e^{\frac{1}{x^{2}-9} .}
\end{aligned}
$$

Domain: $x^{2}-9 \neq 0$, so $x \neq \pm 3$. In interval notation

$$
]-\infty,-3[\cup]-3,3[\cup] 3,+\infty[.
$$

Asymptotes

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{1}{x^{2}-9}=0 \Rightarrow \lim _{x \rightarrow-\infty} e^{\frac{1}{x^{2}-9}}=e^{0}=1 \rightarrow y=1 \text { HOR ASYMPTOTE }(\text { at }-\infty) \\
& \lim _{x \rightarrow+\infty} \frac{1}{x^{2}-9}=0 \Rightarrow \lim _{x \rightarrow+\infty} e^{\frac{1}{x^{2}-9}}=e^{0}=1 \rightarrow y=1 \text { HOR ASYMPTOTE }(\text { at }+\infty) \\
& \lim _{x \rightarrow-3^{-}} \frac{1}{x^{2}-9}=+\infty \Rightarrow \lim _{x \rightarrow-3^{-}} e^{\frac{1}{x^{2}-9}}=+\infty \rightarrow x=-3 \text { VERT ASYMPTOTE } \\
& \lim _{x \rightarrow-3^{+}} \frac{1}{x^{2}-9}=-\infty \Rightarrow \lim _{x \rightarrow-3^{+}} e^{\frac{1}{x^{2}-9}}=0 \\
& \lim _{x \rightarrow 3^{-}} \frac{1}{x^{2}-9}=-\infty \Rightarrow \lim _{x \rightarrow 3^{-}} e^{\frac{1}{x^{2}-9}}=0 \\
& \lim _{x \rightarrow 3^{+}} \frac{1}{x^{2}-9}=+\infty \Rightarrow \lim _{x \rightarrow 3^{+}} e^{\frac{1}{x^{2}-9}}=+\infty \rightarrow x=3 \text { VERT ASYMPTOTE }
\end{aligned}
$$

$$
\begin{equation*}
f(x)=\operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right) \tag{3}
\end{equation*}
$$

Domain: $x^{3} \neq 0$, so $x \neq 0$. In interval notation

$$
\text {] - } \infty, 0[\cup] 0,+\infty[\text {. }
$$

Asymptotes:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{x^{3}+4}{x^{3}}=\lim _{x \rightarrow-\infty} 1+\frac{4}{x^{3}}=1 \Rightarrow \lim _{x \rightarrow-\infty} \operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right)=\operatorname{arctg}(1)=\frac{\pi}{4} \\
&\left.\rightarrow y=\frac{\pi}{4} \text { HOR ASYMPTOTE (at }-\infty\right) \\
& \lim _{x \rightarrow+\infty} \frac{x^{3}+4}{x^{3}}=\lim _{x \rightarrow+\infty} 1+\frac{4}{x^{3}}=1 \Rightarrow \lim _{x \rightarrow-\infty} \operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right)=\operatorname{arctg}(1)=\frac{\pi}{4} \\
&\left.\rightarrow y=\frac{\pi}{4} \text { HOR ASYMPTOTE (at }+\infty\right) \\
& \lim _{x \rightarrow 0^{-}} \frac{x^{3}+4}{x^{3}}=-\infty \Rightarrow \lim _{x \rightarrow 0^{-}} \operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right)=-\frac{\pi}{2} \\
& \lim _{x \rightarrow 0^{+}} \frac{x^{3}+4}{x^{3}}=+\infty \Rightarrow \lim _{x \rightarrow 0^{+}} \operatorname{arctg}\left(\frac{x^{3}+4}{x^{3}}\right)=\frac{\pi}{2}
\end{aligned}
$$

so no vertical asymptotes.

$$
\begin{equation*}
f(x)=\ln \left(\frac{3 x-1}{x-2}\right) \tag{4}
\end{equation*}
$$

Domain: $\frac{3 x-1}{x-2}>0$.

$$
\begin{aligned}
& N: 3 x-1>0 \quad \Rightarrow \quad x>\frac{1}{3} \\
& D: x-2>0 \quad \Rightarrow \quad x>2
\end{aligned}
$$

In interval notation

$$
]-\infty, \frac{1}{3}[\cup] 2,+\infty[.
$$

Asymptotes:

$$
\begin{align*}
& \lim _{x \rightarrow-\infty} \frac{3 x-1}{x-2}=\lim _{x \rightarrow-\infty} \frac{x\left(3-\frac{1}{x}\right)}{x\left(1-\frac{2}{x}\right)}=3 \Rightarrow \lim _{x \rightarrow-\infty} \ln \left(\frac{3 x-1}{x-2}\right)=\ln (3) \\
& \rightarrow y=\ln (3) \text { HOR ASYMPTOTE }(\text { at }-\infty) \\
& \lim _{x \rightarrow+\infty} \frac{3 x-1}{x-2}=\lim _{x \rightarrow+\infty} \frac{x\left(3-\frac{1}{x}\right)}{x\left(1-\frac{2}{x}\right)}=3 \Rightarrow \lim _{x \rightarrow+\infty} \ln \left(\frac{3 x-1}{x-2}\right)=\ln (3) \\
& \\
& \rightarrow y=\ln (3) \text { HOR ASYMPTOTE }(\text { at }+\infty) \\
& \lim _{x \rightarrow 3^{-}} \frac{3 x-1}{x-2}=0 \Rightarrow \lim _{x \rightarrow \frac{1}{3}^{-}} \ln \left(\frac{3 x-1}{x-2}\right)=-\infty \rightarrow x=\frac{1}{3} \text { VERT ASYMPTOTE } \\
& \lim _{x \rightarrow 2^{+}} \frac{3 x-1}{x-2}=+\infty \Rightarrow \lim _{x \rightarrow 2^{+}} \ln \left(\frac{3 x-1}{x-2}\right)=+\infty \rightarrow x=2 \text { VERT ASYMPTOTE } \tag{5}\\
& f(x)=\frac{\cos \left(x^{2}\right)}{x^{2}+1} .
\end{align*}
$$

Domain: $x^{2}+1 \neq 0$. Since x^{2} is always positive, $x^{2}+1$ is always different than 0 , and the domaoin is \mathbb{R}. In interval notation

$$
]-\infty,+\infty[.
$$

Asymptotes: Note that $-1 \leq \cos \left(x^{2}\right) \leq 1$ for every $x \in \mathbb{R}$. Therefore

$$
-\frac{1}{x^{2}+1} \leq \frac{\cos \left(x^{2}\right)}{x^{2}+1} \leq \frac{1}{x^{2}+1}
$$

Now, since

$$
\lim _{x \rightarrow-\infty}-\frac{1}{x^{2}+1}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{2}+1}=0
$$

by the squeeze theorem

$$
\lim _{x \rightarrow-\infty} \frac{\cos \left(x^{2}\right)}{x^{2}+1}=0 \quad \rightarrow \quad y=0 \quad \text { HOR ASYMPTOTE }(\text { at }-\infty)
$$

Similarly, by the squeeze theorem

$$
\lim _{x \rightarrow+\infty} \frac{\cos \left(x^{2}\right)}{x^{2}+1}=0 \quad \rightarrow \quad y=0 \quad \text { HOR ASYMPTOTE }(\text { at }+\infty)
$$

Problem 2

Compute the following limits if they exist or prove that they don't exist

$$
\begin{align*}
& \lim _{x \rightarrow+\infty} \frac{3 e^{4 x}+1}{e^{x}-e^{4 x}}=\lim _{x \rightarrow+\infty} \frac{e^{4 x}\left(3+\frac{1}{e^{4 x}}\right)}{e^{4 x}\left(\frac{1}{e^{3 x}}-1\right)}=\lim _{x \rightarrow+\infty} \frac{3+\frac{1}{e^{4 x}}}{\frac{1}{e^{3 x}}-1}=-3 . \tag{6}\\
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{2-\sqrt{4+x^{2}}}{9 x^{2}} & =\lim _{x \rightarrow 0} \frac{2-\sqrt{4+x^{2}}}{9 x^{2}} \cdot \frac{2+\sqrt{4+x^{2}}}{2+\sqrt{4+x^{2}}}=\lim _{x \rightarrow 0} \frac{4-4-x^{2}}{9 x^{2}\left(2+\sqrt{4+x^{2}}\right)} \\
& =\lim _{x \rightarrow 0}-\frac{1}{9\left(2+\sqrt{4+x^{2}}\right)}=-\frac{1}{9 \cdot 4}
\end{aligned} \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\frac{10}{3+2 x}-\frac{10}{3}}{x^{2}-2 x}=\lim _{x \rightarrow 0} \frac{\frac{30-30-20 x}{3(3+2 x)}}{x(x-2)}=\lim _{x \rightarrow 0} \frac{-20 x}{3(3+2 x)} \cdot \frac{1}{x(x-2)}=\lim _{x \rightarrow 0} \frac{-20}{3(3+2 x)(x-2)} \tag{8}
\end{equation*}
$$

$$
=\frac{-20}{3 \cdot 3 \cdot(-2)}=\frac{10}{9}
$$

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \cos (4 x) \cdot e^{-x^{2}} \tag{9}
\end{equation*}
$$

Note that $-1 \leq \cos (4 x) \leq 1$ for every $x \in \mathbb{R}$. Therefore

$$
-e^{-x^{2}} \leq \cos (4 x) \cdot e^{-x^{2}} \leq e^{-x^{2}}
$$

Now, since $\lim _{x \rightarrow-\infty}\left(-x^{2}\right)=-\infty$ we have

$$
\lim _{x \rightarrow-\infty}-e^{-x^{2}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} e^{-x^{2}}=0
$$

Therefore, by the squeeze theorem

$$
\lim _{x \rightarrow-\infty} \cos (4 x) \cdot e^{-x^{2}}=0
$$

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \sin (x) \cdot \frac{x}{x^{2}-2} \tag{10}
\end{equation*}
$$

Similarly to the previous problem we have $-1 \leq \sin (x) \leq 1$ for every $x \in \mathbb{R}$. Therefore

$$
-\frac{x}{x^{2}-2} \leq \sin (x) \cdot \frac{x}{x^{2}-2} \leq \frac{x}{x^{2}-2} .
$$

Now we can compute

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}-\frac{x}{x^{2}-2}=\lim _{x \rightarrow \infty}-\frac{x}{x^{2}\left(1-\frac{2}{x^{2}}\right)}=\lim _{x \rightarrow \infty}-\frac{1}{x} \cdot \frac{1}{\left(1-\frac{2}{x^{2}}\right)}=0 \\
& \lim _{x \rightarrow \infty} \frac{x}{x^{2}-2}=\lim _{x \rightarrow \infty} \frac{x}{x^{2}\left(1-\frac{2}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1}{\left(1-\frac{2}{x^{2}}\right)}=0 .
\end{aligned}
$$

Therefore by the squeeze theorem we have

$$
\lim _{x \rightarrow+\infty} \sin (x) \cdot \frac{x}{x^{2}-2}=0
$$

(11) $\lim _{x \rightarrow 0} \frac{\left|x^{3}\right|}{x^{3}-x}$.

The function $\left|x^{3}\right|$ is piecewise defined:

$$
\left|x^{3}\right|=\left\{\begin{array}{l}
x^{3} \quad \text { if } \quad x \geq 0 \\
-x^{3} \quad \text { if } \quad x<0
\end{array}\right.
$$

therefore we compute the sided limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\left|x^{3}\right|}{x^{3}-x}=\lim _{x \rightarrow 0^{+}} \frac{x^{3}}{x\left(x^{2}-1\right)}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x^{2}-1}=0 \\
& \lim _{x \rightarrow 0^{-}} \frac{\left|x^{3}\right|}{x^{3}-x}=\lim _{x \rightarrow 0^{+}} \frac{-x^{3}}{x\left(x^{2}-1\right)}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x^{2}-1}=0
\end{aligned}
$$

and in conclusion

$$
\lim _{x \rightarrow 0} \frac{\left|x^{3}\right|}{x^{3}-x}=0
$$

(12) $\lim _{x \rightarrow-1} \frac{2 x+2}{|x+1|}$

The function $|x+1|$ is piecewise defined:

$$
|x+1|=\left\{\begin{array}{lll}
x+1 & \text { if } & x \geq-1 \\
-(x+1) & \text { if } \quad x<-1
\end{array}\right.
$$

therefore we compute the sided limits:

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} \frac{2 x+2}{|x+1|} & =\lim _{x \rightarrow-1^{+}} \frac{2(x+1)}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{2}{1}=2 \\
\lim _{x \rightarrow-1^{-}} \frac{2 x+2}{|x+1|} & =\lim _{x \rightarrow-1^{-}} \frac{-2(x+1)}{x+1}=\lim _{x \rightarrow-1^{-}} \frac{-2}{1}=-2
\end{aligned}
$$

and we conclude that

$$
\lim _{x \rightarrow-1} \frac{2 x+2}{|x+1|} \quad \text { doesn't exist. }
$$

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{7 x}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)}}{7 x}=\lim _{x \rightarrow-\infty} \frac{-x \cdot \sqrt{1+\frac{1}{x^{2}}}}{7 x}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{1+\frac{1}{x^{2}}}}{7}=-\frac{1}{7} \tag{13}
\end{equation*}
$$

Problem 3

Are the following functions continuous? If not classify the type of discontinuity they exhibit.

$$
\begin{equation*}
f(x)=\sqrt{x^{6}+x^{4}+2} \tag{14}
\end{equation*}
$$

Note that $x^{6}+x^{4}+2$ is always positive, so the domain is \mathbb{R}.
As a composition of a square root and a polynomial (which are continuous functions) f is continuous everywhere.

$$
\begin{equation*}
f(x)=\left|x^{2}-4\right| \tag{15}
\end{equation*}
$$

As a composition of the absolute value function and a polynomial (which are continuous) f is continuous everywhere.

$$
f(x)=\left\{\begin{array}{l}
\frac{x+1}{x-2} \text { for } \quad x>2 \tag{16}\\
x^{3}-1 \quad \text { for } \quad x \leq 2
\end{array}\right.
$$

Note that the function is continuous at every point different than 2 . We need to check $x=2$.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}\left(x^{3}-1\right)=7 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} \frac{x+1}{x-2}=+\infty
\end{aligned}
$$

so the function has an INFINITE discontinuity at $x=2$.

$$
f(x)=\left\{\begin{array}{l}
e^{-\frac{1}{x^{2}}} \quad \text { for } \quad x \neq 0 \tag{17}\\
1 \quad \text { for } \quad x=0
\end{array}\right.
$$

As a composition of continuous functions, f is continuous at every point different than 0 . We need to check $x=0$.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{-\frac{1}{x^{2}}}=0 & \text { because } & \lim _{x \rightarrow 0^{-}}-\frac{1}{x^{2}}=-\infty \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x^{2}}}=0 & \text { because } & \lim _{x \rightarrow 0^{+}}-\frac{1}{x^{2}}=-\infty \\
f(0)=1 &
\end{array}
$$

so the function has a REMOVABLE discontinuity at $x=0$.

Do the following equations admit any real solutions?

$$
\begin{equation*}
\ln (x-1)+\ln (x)=1 \tag{18}
\end{equation*}
$$

This equation can be solved explicitly.
Domain (both logarithms must exist at the same time):

$$
\begin{aligned}
& x>1 \\
& x>0
\end{aligned}
$$

so we get the domain by taking the intersection, which is $x>0$. Now we can apply properties of logarithms to solve it:

$$
\begin{aligned}
& \ln (x(x-1))=1 \\
& \ln \left(x^{2}-x\right)=\ln (e) \\
& x^{2}-x=e \\
& x^{2}-x-e=0
\end{aligned}
$$

and using the quadratic formula we get

$$
x_{1}, x_{2}=\frac{1 \pm \sqrt{1+4 e}}{2}
$$

but only $x_{1}=\frac{1+\sqrt{1+4 e}}{2}$ is acceptable (because $\sqrt{1+4 e}>1$ so $1-\sqrt{1+4 e}<0$).

$$
\begin{equation*}
x^{5}-x=2 . \tag{19}
\end{equation*}
$$

We can't solve this explicitly, so rewrite it in the form

$$
x^{5}-x-2=0 .
$$

Consider the function $f(x)=x^{5}-x-2$, which is CONTINUOUS for every $x \in \mathbb{R}$.
Note that $f(0)=-2<0$ and $f(2)=2^{5}-2-2>0$, therefore by the Intermediate Value Theorem the equation has at least one solution in the interval [0,2].

$$
\begin{equation*}
\operatorname{arctg}(x)=x^{3}-x \tag{20}
\end{equation*}
$$

Simply note that $x=0$ is a solution of the equation.

$$
\begin{equation*}
e^{x}+x^{2}+2=0 \tag{21}
\end{equation*}
$$

Note that $e^{x}+x^{2}+2$ is always greater than 2 , in particular it can never be 0 . So the equation doesn't admit any real solution $(\nexists x \in \mathbb{R})$.

Problem 4

Compute the derivatives of the following functions
$f(x)=\left(x^{3}-3 x^{2}+1\right) \cos \left(3 x^{2}\right)$
$f^{\prime}(x)=\left(3 x^{2}-6 x\right) \cos \left(3 x^{2}\right)+\left(x^{3}-3 x^{2}+1\right)\left(-\sin \left(3 x^{2}\right)\right) 6 x$
$f(x)=\frac{\operatorname{arctg}\left(x^{2}\right)}{e^{-x}}=e^{x} \operatorname{arctg}\left(x^{2}\right)$
$f^{\prime}(x)=e^{x} \operatorname{arctg}\left(x^{2}\right)+e^{x} \frac{1}{1+x^{4}}(2 x)$
$f(x)=\sqrt[4]{x^{6}-2}=\left(x^{6}-2\right)^{\frac{1}{4}}$
$f^{\prime}(x)=\frac{1}{4}\left(x^{6}-2\right)^{\frac{-3}{4}} 6 x^{5}$
$f(x)=\arcsin \left(\frac{3}{x^{3}}\right)=\arcsin \left(3 x^{-3}\right)$
$f^{\prime}(x)=\frac{1}{\sqrt{1-\left(3 x^{-3}\right)^{2}}}\left(-9 x^{-4}\right)$
$f(x)=\sin ^{5}(3 x)=(\sin (3 x))^{5}$
$f^{\prime}(x)=5(\sin (3 x))^{4} \cos (3 x) \cdot 3$
$f(x)=\left(x^{5}+1\right)^{2 x-1}=e^{\ln \left(\left(x^{5}+1\right)^{2 x-1}\right)}=e^{(2 x-1) \ln \left(x^{5}+1\right)}$

$$
\begin{equation*}
f^{\prime}(x)=e^{(2 x-1) \ln \left(x^{5}+1\right)}\left(2 \ln \left(x^{5}+1\right)+(2 x-1) \frac{1}{x^{5}+1} \cdot 5 x^{4}\right) \tag{27}
\end{equation*}
$$

Problem 5

Find $\frac{d y}{d x}$ for the functions implicitly defined by the following equations

$$
\begin{align*}
& x^{2}=y^{3}-2 x . \tag{28}\\
& 2 x=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 x+2}{3 y^{2}} .
\end{align*}
$$

(29) $\quad \cos (y)=x y^{2}+2$
$-\sin (y) \frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\sin (y) \frac{\mathrm{d} y}{\mathrm{~d} x}=-y^{2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}(2 x y+\sin (y))=-y^{2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-y^{2}}{2 x y+\sin (y)}$.
$\ln (x y)=x+y$
$\frac{1}{x y}\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{1}{x}+\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{\mathrm{d} y}{\mathrm{~d} x}=1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}\left(\frac{1}{y}-1\right)=1-\frac{1}{x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-\frac{1}{x}}{\frac{1}{y}-1}$
$\arcsin \left(y^{2}\right)=e^{x+y}$
$\frac{1}{\sqrt{1-y^{4}}} \cdot 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{x+y}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$
$\frac{2 y}{\sqrt{1-y^{4}}} \frac{\mathrm{~d} y}{\mathrm{~d} x}-e^{x+y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=e^{x+y}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x+y}}{\frac{2 y}{\sqrt{1-y^{4}}}-e^{x+y}}$

Problem 6

32) Determine the equation of the tangent line to the graph of the function $f(x)=\ln (x)$ at $x=1$.
$f^{\prime}(x)=\frac{1}{x}$.
Slope of tangent line at $x=1$ is given by $f^{\prime}(1)=1$.
The point is given by $x=1, y=\ln (1)=0$.
Therefore the equation of the tangent is $y=x-1$.
Is there a point where the tangent is parallel to the line $y=3 x-1$?
Being parallel to a line means having the same slope. Therefore we are looking for points x where $f^{\prime}(x)=3$. This gives the equation $\frac{1}{x}=3$ which has solution $x=\frac{1}{3}$. Therefore the tangent to the graph of $y=\ln (x)$ is parallel to the line $y=3 x-1$ at the point $(1 / 3, \ln (1 / 3))$.
Is there a point where the tangent is horizontal?
Being horizontal means slope $=0$. Therefore we need to solve

$$
\frac{1}{x}=0
$$

which is impossible. So there are no points where the tangent is horizontal.
33) Determine the equation of the tangent line to the ellipse of horizontal semi-axis 3 and vertical semi-axis 4 at the point $\left(\sqrt{5}, \frac{8}{3}\right)$.
The equation of such ellipse is

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
$$

To find the tangent at $\left(\sqrt{5}, \frac{8}{3}\right)$ we need to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=\sqrt{5}, y=\frac{8}{3}$. We use implicit differentiation:

$$
\begin{aligned}
& \frac{2}{9} x+\frac{2}{16} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{x}{9} \cdot \frac{16}{y}=-\frac{\sqrt{5}}{9} \cdot \frac{16 \cdot 3}{8}=-\frac{2}{3} \sqrt{5}
\end{aligned}
$$

Therefore the equation of the tangent is $y-\frac{8}{3}=-\frac{2}{3} \sqrt{5}(x-\sqrt{5})$.
Are there any points where the tangent to the ellipse is horizontal?
This means

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad \text { so } \quad-\frac{x}{9} \cdot \frac{16}{y}=0
$$

which has solution $x=0$. This corresponds to 2 points on the ellipse, namely $(0,4)$ and $(0,-4)$.
34)Is the line $y=-x+2$ tangent to the graph of the function $y=\ln \left(x^{2}+1\right)$?

The given line has slope equal to -1 .
First let's see if there is any point where $f^{\prime}(x)=-1$.
$f(x)=\ln \left(x^{2}+1\right)$ so $f^{\prime}(x)=\frac{2 x}{x^{2}+1}$.
Solve the equation

$$
\begin{aligned}
& \frac{2 x}{x^{2}+1}=-1 \\
& 2 x=-x^{2}-1 \\
& x^{2}+2 x+1=0 \\
& (x+1)^{2}=0 \\
& x=-1
\end{aligned}
$$

Now let's find the tangent line at $x=-1$. The y coordinate of the point on the graph is $y=\ln (1+1)=\ln (2)$, so the tangent line is

$$
y-\ln (2)=-(x+1)
$$

which is clearly different than $y=-x+2$. In conclusion $y=-x+2$ is not tangent to the graph of $y=\ln \left(x^{2}+1\right)$.
35^{*}) Suppose $f(x) \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$ for all $x>0$. Can we compute $\lim _{x \rightarrow 0^{+}} f(x)$?
What if $|f(x)| \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$ for all $x>0$?
Note that $-x \leq x \cos \left(\frac{1}{\sqrt{x}}\right) \leq x$ and therefore by the squeeze theorem

$$
\lim _{x \rightarrow 0^{+}} x \cos \left(\frac{1}{\sqrt{x}}\right)=0 .
$$

Similarly

$$
\lim _{x \rightarrow 0^{+}}-x \cos \left(\frac{1}{\sqrt{x}}\right)=0 .
$$

Now, in the case $|f(x)| \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$, by eliminating the absolute value we get the bounds

$$
-x \cos \left(\frac{1}{\sqrt{x}}\right) \leq f(x) \leq x \cos \left(\frac{1}{\sqrt{x}}\right)
$$

therefore by the squeeze theorem

$$
\lim _{x \rightarrow 0^{+}} f(x)=0
$$

If we only have $f(x) \leq x \cos \left(\frac{1}{\sqrt{x}}\right)$ we can't apply the same reasoning, because we are missing a lower bound and we can't determine the limit of $f(x)$.
$\left.36^{* *}\right)$ Does there exist a common tangent to the curves $y=e^{x}$ and $y=-x^{2}$?
Let's compute the equation of the tangent line to $f(x)=e^{x}$ at a generic point $\left(a, e^{a}\right)$.
$f^{\prime}(x)=e^{x}$ so the equation of such tangent is $y-e^{a}=e^{a}(x-a)$ and simplifying

$$
y=e^{a} x-a e^{a}+e^{a} .
$$

Now let's compute the tangent to $g(x)=-x^{2}$ at a generic point $\left(b,-b^{2}\right) \cdot g^{\prime}(x)=-2 x$ so the tangent is $y+b^{2}=-2 b(x-b)$ and simplifying

$$
y=-2 b x+b^{2} .
$$

The curves have a common tangent if the slopes and the y-intercepts of the 2 tangents are the same, in other words if the following system admits a solution:

$$
\left\{\begin{array} { l }
{ e ^ { a } = - 2 b } \\
{ - a e ^ { a } + e ^ { a } = b ^ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
b=-\frac{1}{2} e^{a} \\
-a e^{a}+e^{a}=\frac{1}{4} e^{2 a}
\end{array}\right.\right.
$$

The system has solution if the equation $-a e^{a}+e^{a}=\frac{1}{4} e^{2 a}$ has a solution. Dividing both sides by e^{a} the equation reduces to

$$
-a+1=\frac{1}{4} e^{2 a}
$$

which can't be solved explicitly. So we rewrite it as

$$
\frac{1}{4} e^{2 a}+a-1=0
$$

and consider the function $F(a)=\frac{1}{4} e^{2 a}+a-1$ which is continuous everywhere. Moreover $F(0)=\frac{1}{4}-1<0$ and $F(1)=\frac{1}{4} e>0$ so by the IVT there is at least a solution. Therefore there is at least one common tangent to the 2 graphs.

